Point Kinetics Decomposition Method

This method determines the solution to the point reactor kinetics model for constant reactivity by using solutions to the linear matrix with constant entries. They can be extended to a recursive problem for non-constant reactivity. First you need to expand the neutron density and delayed neutron equations. These are then built into a set of linear first-order differential equations in matrix form.
The first term expansion of the point kinetics equations
$$\begin{matrix}
\frac{d}{dt}n_j(t)=\frac{\rho_0-\beta}{\Lambda}n_j(t)+\sum^6_{i=1}\lambda_iC_{ij}(t)+\frac{\rho_1(t)}{\Lambda}n_{j-1}(t) \\
\frac{d}{dt}C_{1j}(t)=\frac{\beta_1}{\Lambda}n_j(t)-\lambda_1C_{1j}(t) \\
\vdots \\
\frac{d}{dt}C_{6j}(t)=\frac{\beta_6}{\Lambda}n_j(t)-\lambda_6C_{6j}(t) \\
\end{matrix}$$
Which gives the non-homogenous matrices
$$\begin{bmatrix}
\frac{d}{dt}n_0 \\ \frac{d}{dt}C_{10} \\ \vdots \\ \frac{d}{dt}C_{60}
\end{bmatrix}=
\begin{bmatrix}
\frac{\rho_0-\beta}{\Lambda} & \lambda_1 & \dots & \lambda_6 \\
\frac{\beta_1}{\Lambda} & -\lambda_1 & 0 & 0 \\
\vdots & 0 & \ddots & \vdots \\
\frac{\beta_6}{\Lambda} & 0 & \dots & -\lambda_7 \\
\end{bmatrix}
\begin{bmatrix}
n_0 \\ C_{10} \\ \vdots \\ C_{60}
\end{bmatrix}$$
These matrices are then solved using the Laplace transform technique with this decomposition method for multiple eigenvalues. The nonhomogeneous equation is
$$\begin{bmatrix}
\frac{d}{dt}n_0 \ \frac{d}{dt}C_{10} \ \vdots \ \frac{d}{dt}C_{60}
\end{bmatrix}=
\begin{bmatrix}
\frac{\rho_0-\beta}{\Lambda} & \lambda_1 & \dots & \lambda_6 \\
\frac{\beta_1}{\Lambda} & -\lambda_1 & 0 & 0 \\
\vdots & 0 & \ddots & \vdots \\
\frac{\beta_6}{\Lambda} & 0 & \dots & -\lambda_7 \\
\end{bmatrix}
\begin{bmatrix}
n_0 \\ C_{10} \\ \vdots \\ C_{60}
\end{bmatrix}+
\begin{bmatrix}
\frac{\rho_1(t)}{\Lambda} & 0 & \dots & 0 \\
0 & 0 & \dots & 0 \\
\vdots & \vdots & \ddots & \vdots\\
0 & 0 &\dots& 0
\end{bmatrix}
\begin{bmatrix}
n_{j-1} \\ C_{1j-1} \\ \vdots \\ C_{6j-1}
\end{bmatrix}$$

[[Linear Differential Matrix Equations]]

petersenclaudioANALYTICALSOLUTIONPOINT