The neutronics model for the TRIGA Mk 2 is a simple 6-precursor point kinetics model.
$$\frac{dP}{dt}=\frac{\rho-\beta}{\Lambda}+\sum\lambda_iC_i$$
$$\frac{dC}{dt}=\frac{\beta_i}{\Lambda}P-\lambda_iVC_i$$
The neutronic parameters are shown below.
\(\beta\) | \(730e-5\) |
\(\lambda_1[1/s]-\beta_1/\beta\) | 0.0124-0.033 |
\(\lambda_2[1/s]-\beta_2/\beta\) | 0.0305-0.219 |
\(\lambda_3[1/s]-\beta_3/\beta\) | 0.111-0.196 |
\(\lambda_4[1/s]-\beta_4/\beta\) | 0.301-0.395 |
\(\lambda_5[1/s]-\beta_5/\beta\) | 1.14-0.115 |
\(\lambda_6[1/s]-\beta_6/\beta\) | 3.01-0.042 |
\(\Lambda[s]\) | 60e-6 |
Sources
- TRIGAMarkII2021
Backlinks
Mean Neutron Generation Time
Point Reactor Kinetics Model
[[TRIGA Mk 2 Reactor]]